
ERDC MSRC/PET TR/00-33

Comparison of OpenMP and Pthreads within a Coastal Ocean
Circulation Model Code

by

Clay P. Breshears
Phu Luong

13 July 2000

07h0142000



Abstract

Numerical grid generation techniques play an important role in the numerical solution of
partial di�erential equations on arbitrarily shaped regions. For coastal ocean modeling, a
one-block grid covering the region of interest, while commonly used, has many disadvan-
tages, including large numbers of unused grid points around bodies of water with compli-
cated coastlines, large memory requirements, and poor resolution for a large body of water.
The Multiblock Grid Princeton Ocean Model (MGPOM) ocean circulation code is used to
overcome these problems.

The MGPOM code uses multiple grid blocks designed to best �t the region of interest.
Computation within each individual grid block can be done in parallel using MPI to syn-
chronize processing and communicate shared data. Since not all grid blocks are of the same
size, the work load varies between MPI processes. Such load imbalances force processors
with small grid blocks to remain idle at communication points. To alleviate this imbalance,
we investigate the use of threads within the parallel computations.

In this study, we compare the two threading models of OpenMP and Pthreads with
an eye toward correcting the load imbalance between blocks. Along with overall execution
time performance enhancements on the MGPOM code achieved by use of each model, the
ease of programming with each model will also be examined. By keeping the focus at a
high level and the use of the MGPOM production code as a test case, it is intended that
users will gain a better insight into the strengths and pitfalls of each model.



Comparison of OpenMP and Pthreads within a Coastal Ocean

Circulation Model Code

Clay P. Breshears1 Phu Luong2

July 13, 2000

1Rice University; PET On-site Scalable Parallel Programming Tools Lead
2University of Texas, Austin; PET On-site Environmental Quality Modeling Lead



July 13, 2000 Comparison of OpenMP and Pthreads

1 Introduction

Over the years, the traditional one-block rectangular grid has been used for ocean circulation

modeling. This technology encounters di�culty on computational grids with high resolution

owing to the large memory and computing requirements. For a large body of water, such

as an ocean with complicated coastlines, the number of grid points used in the calculation

(water points) is often the same or even smaller than the number of unused grid points (land

points). It is known that domain decomposition can be used to partition the traditional one-

block grid into sub-domains that reduce the unused grid points and improve performance

of the ocean model [6].

Another approach, known as multiblock grid generation technique, can be used to re-

duce the unused grid points and to improve the performance of the model as well [5]. The

multiblock grid generation technique allows choice of the grid with minimum land points

along the coastline and elimination of other inland points not directly involved with the

computation. The Multiblock Grid Princeton Ocean Model (MGPOM) [5] ocean circula-

tion code has used this technique successfully. A parallel version of MGPOM assigns grid

blocks to unique MPI processes with appropriate message passing commands used to share

overlapping grid points.

Since not all grid blocks are of the same size, the workload varies between MPI processes.

Multithreading of the computations was seen as a means of correcting this load imbalance.

Two models are readily available on a variety of high performance computing platforms:

OpenMP and Pthreads. But which should be used?

In this study we compare and contrast the two threading models as a programmer

1 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

would. It is not our intention to di�erentiate OpenMP and Pthreads at a low level of

implementation. Rather, a comparison by the amount of execution time reduction achiev-

able and (perhaps more importantly) how easy each model's programming constructs are

incorporated within an existing code shall be our focus.

The MGPOM code is written in Fortran. The Fortran interface of OpenMP is well-

de�ned; however, Pthreads is only de�ned with a C language interface. Thus, we make

use of the Fortran API to Pthreads (FPTHRD) [2] developed at the U.S. Army Engineer

Research and Development Center (ERDC) Major Shared Resource Center (MSRC). The

necessity of using FPTHRD adds a layer of indirection between an application code and

the Pthreads functions. This reinforces the use of a higher level analysis of the threading

models.

An overview of the MGPOM code using MPI is given in Section 2 with a brief review

of OpenMP and the FPTHRD package given in Section 3. The process used to modify the

MGPOM code for concurrent computations within MPI processes by both OpenMP and

FPTHRD is discussed in Section 4. Performance results of the parallel codes (MPI-Only,

MPI/OpenMP, and MPI/Pthreads) are compared in Section 4. Conclusions from this study

are presented in Section 6.

2 MGPOM Code Details

MGPOM is a Fortran code that was initially designed for serial computers and later ported

to vector machines. The model primitive equations describe the velocity, surface elevation,

salinity, and temperature �elds in the ocean. The ocean is assumed to be hydrostatic and

2 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

incompressible (Boussinesq approximation).

In the parallel MGPOM version, each rectangular block grid must exchange data at

overlapping grid points along the interfaces (west, south, east, and north) with adjacent

blocks. Special considerations for computing with interfaces bordering open ocean, or those

without adjacent blocks, are built into the model. Asynchronous receives are posted for

each block interface after each set of overlap data is sent. After all data have been sent,

each block processes the actual receipt of data. The exchange between blocks is completed

after the data have arrived in the block's processor and been moved into the appropriate

overlapping grid points.

Since all blocks synchronize to some extent at the communication routines, those blocks

with less computation to be done prior to communication will tend to spend more time

waiting for completion of data exchanges than blocks assigned more grid points. One

possible means to balance the workload more evenly would require a complete restructuring

of the grid blocks in the data set. Another method for creating a more balanced execution

time between communication updates would be to further parallelize the computations in

those blocks that have been assigned larger numbers of grid points.

3 OpenMP and FPTHRD

3.1 OpenMP

OpenMP [7] is a collection of compiler directives, library routines, and environment variables

that can be used to specify shared-memory parallelism. Directives denote parallel regions.

Within parallel regions, loop iterations and/or separate blocks of code (sections) may be

3 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

designated as executable in parallel. Compiler directives are also available to control access

to code segments or critical regions updating shared data. Library routines and environment

variables are used to control execution characteristics of OpenMP codes.

3.2 FPTHRD

Pthreads is the library of POSIX standard functions for concurrent, multithreaded pro-

gramming. The POSIX standard [3] only de�nes an application programming interface

(API) to the C programming language, not to Fortran. The FPTHRD package consists of

a Fortran module and �le of C routines. The module de�nes Fortran derived types, param-

eters, interfaces, and routines to allow Fortran programmers to use Pthread routines. The

C functions provide the interface from Fortran subroutine calls and map parameters into

the corresponding POSIX routines and function arguments.

The names of the FPTHRD routines are derived from the Pthreads root names. The

string fpthrd replaces the pre�x pthread in order to comply with the limits on subroutine

names in Fortran. For consistency, all POSIX data types and de�ned constants pre�xed

with pthread (PTHREAD ) are de�ned with the pre�x fpthrd (FPTHRD ) within

the Fortran module.

The Fortran API preserves the order of the arguments of the C functions and provides

the C function value as the �nal argument. This trailing integer argument is most often

used to return an indicator of the termination status of the routine. Fortran interface

blocks also make it possible for the status parameter to be optional in all but one Fortran

routine call. One particular value of note is the FPTHRD-de�ned parameterNULL passed

from Fortran to C routines. This integer is used as a signal within the C wrapper code to

4 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

substitute a NULL pointer for the corresponding function argument.

4 Threading MGPOM

The structure of the MGPOM code contains one major loop within the main program.

This loop iterates over the time-steps of the execution simulation. Within this loop are

several subroutine calls (four of these are for MPI communication, while the others perform

computation). The computation subroutines are composed of multiple doubly and triply

nested loops operating on arrays located in COMMON blocks. Since most of these arrays are

related to the grid blocks, they have the same dimensionality (at least within the �rst two

de�ned indices).

Pro�ling the serial code revealed several routines that accounted for more than half

of the total execution time. Threading e�orts centered on these routines within the MPI

version of MGPOM.

4.1 Finding Data Dependencies

Each loop within a chosen subroutine was examined in order to determine if and where

OpenMP directives could be inserted. The goal was to place directives at the outermost

nesting level as possible. Consider the two loops shown in Figure 1. The �rst loop (315) has

no iteration dependencies. Thus, the OpenMP parallel do directive can be placed outside

of the K loop. The second loop (230) does have a dependence (i.e., between QF(I,J,K-1),

QF(I,J,K), and QF(I,J,K+1)) that requires the iterations of the K loop be done in order.

The parallel do directive must be placed within the K loop.

Inter-loop data dependencies were checked after locating all intra-loop data dependencies

5 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Figure 1 MGPOM Code Example for Data Dependencies

DO 315 K=2,KBM1

DO 315 J=1,JM

DO 315 I=1,IM

A(I,J,K)=A(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I-1,J,K))*(H(I,J)+H(I-1,J))

& *(QB(I,J,K)-QB(I-1,J,K))*DUM(I,J)/(DX(I,J)+DX(I-1,J))

C(I,J,K)=C(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I,J-1,K))*(H(I,J)+H(I,J-1))

& *(QB(I,J,K)-QB(I,J-1,K))*DVM(I,J)/(DY(I,J)+DY(I,J-1))

A(I,J,K)=.50*(DY(I,J)+DY(I-1,J))*A(I,J,K)

C(I,J,K)=.50*(DX(I,J)+DX(I,J-1))*C(I,J,K)

315 CONTINUE

DO 230 K=2,KBM1

DO 230 J=1,JM

DO 230 I=1,IM

QF(I,J,K)=(W(I,J,K-1)*QF(I,J,K-1)

& -W(I,J,K+1)*QF(I,J,K+1))/(DZ(K)+DZ(K-1))*ART(I,J)

& +A(I+1,J,K)-A(I,J,K)+C(I,J+1,K)-C(I,J,K)

QF(I,J,K)=((H(I,J)+ETB(I,J))*ART(I,J)*

& QB(I,J,K)-DT2*QF(I,J,K))/((H(I,J)+ETF(I,J))*ART(I,J))

230 CONTINUE

6 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

of the chosen MGPOM subroutines. In this case, potential read/write conicts were looked

for; that is, threads that access some array element that is updated within a previous loop

that may be concurrently executed by a di�erent thread. For such a conict, the order of

execution between the reading of an array value and the update of that array value must be

done in the correct order. Such dependencies necessitate a synchronization between loops

to guarantee correct execution sequencing.

In order to �nd any inter-loop dependencies between threads, we compiled a listing

of the read set and write set of each loop. For the purposes with MGPOM, the read

set of a loop is the set of all array elements that are used on the right-hand side of an

assignment statement (the value is \read" from memory), while the write set is the set of

all array elements that are used on the left-hand side of an assignment statement (the value

is \written" into memory). After all the read/write set data have been gathered for each

loop of a subroutine, the write set of each loop is compared to the read sets of all loops for

any overlap.

As a concrete example of this process, consider the code extract of two loops from a

subroutine of the MGPOM program shown in Figure 1. Figure 2 displays details of the write

and read sets for these loops. Examination of the data in Figure 2 shows that a potential

dependence exists, speci�cally, A(I+1,J,K), A(I,J,K), C(I,J+1,K), and C(I,J,K) of the

read set for loop 230 overlap with A(I,J,K) and C(I,J,K) of the write set of loop 315.

4.2 OpenMP Considerations

As stated above, intra-loop data dependencies determine the placement of OpenMP par-

allel do directives. Since all OpenMP threads synchronize automatically at the end of

7 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Figure 2 Write Set and Read Set Form for Loops 315 and 230

Loop Write Set Read Set

315 A(I,J,K) A(I,J,K) AAM(I,J,K) AAM(I-1,J,K) H(I,J) H(I-1,J)

C(I,J,K) QB(I,J,K) QB(I-1,J,K) DUM(I,J) DX(I,J) DX(I-1,J)

C(I,J,K) AAM(I,J-1,K) H(I,J-1) DVM(I,J) DY(I,J)

DY(I,J-1) DY(I-1,J) DX(I,J-1)

230 QF(I,J,K) W(I,J,K-1) QF(I,J,K-1) W(I,J,K+1) QF(I,J,K+1)

DZ(K) DZ(K-1) ART(I,J) A(I+1,J,K) A(I,J,K)

C(I,J+1,K) C(I,J,K) H(I,J) ETB(I,J) QB(I,J,K)

DT2 QF(I,J,K) ETF(I,J)

parallel do constructs, it is not necessary to consider inter-loop dependencies. However, in

order to avoid the overhead of creating threads multiple times within the same subroutine

execution, it is possible to designate the entire subroutine be placed within an OpenMP

parallel region and use the nowait option at the end of each loop construct to foil the

automatic synchronization. Under this technique, the programmer must be sure that the

nowait is not used between loops that have been found to contain inter-loop dependencies.

>From previous experience [4] with the dynamic threading feature of OpenMP and

the similar load imbalance characteristics inherent in the multiblock grid structure, we

employed a method of using OpenMP with a dynamic number of threads per MPI process.

This method involved manual control of the number of threads spawned by each process.

A threshold of the minimum amount of work needed to spawn a thread is set, and each

process computes the number of threads (up to some set maximum number) that should be

used based on the assigned workload. The OpenMP routine OMP SET NUM THREADS

is called after the number of threads for the process has been computed. When a process

determines that a single thread is to be used, the original serial routine is called; otherwise,

a version with added directives is called. This avoids the overhead needed to create a single

8 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

OpenMP thread, perhaps multiple times within a single routine.

4.3 FPTHRD

Unlike OpenMP loop-level directives, Pthreads supports concurrency at the task or func-

tional level. Thus, if entire subroutines from the code could be used for targets of thread

creation, only minor modi�cations of the code would be necessary. Otherwise, e�orts to

thread an existing code would be centered on locating those parts of the code that could

be executed concurrently and extracting the lines from the program that implement these

portions into utility subroutines that are then used for thread creation and execution. It

should be obvious that the former situation is more desirable.

Once candidate subroutines were identi�ed, each was examined in more detail to ascer-

tain whether or not the subroutine could be run concurrently. The analysis from OpenMP

insertion was used for this part of the conversion. As with OpenMP, the potential for

concurrency is dependent on how the arrays are partitioned and assigned to threads.

For the MGPOM code, a static allocation model was used since all arrays accessed

within all loops of the chosen subroutines had the same dimensionality within the �rst two

de�ned indices. Taking our cue from the OpenMP implementation, code was written to

determine the number of threads to be created within the MPI process based on the size of

the data block assigned to the process. Unlike OpenMP, a one-dimensional decomposition

along one or the other of the �rst two indices or a two-dimensional decomposition of the

�rst two indices of the block (and consequently all other pertinent arrays) into sub-blocks

was then computed: one sub-block per thread to be created. The exact decomposition

depended upon the number of threads assigned to the block and the relative lengths of the

9 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

sides of the block. A decomposition that would yield the \squarest" sub-blocks was our

goal in this study. The index boundaries of the sub-blocks within the block are saved into

a global array. These index values are used by each thread created as loop iteration bounds

within each threaded subroutine.

The decomposition of data determines where data dependencies can occur. Potential

dependencies between threads under this static decomposition are possible when one thread

accesses an array element outside the assigned sub-block; i.e., an array reference within a

loop that contains an index of I+1, J+1, I-1, or J-1. Should a read (write) set contain

a potential overlap index of an array contained within a write (read) set, there exists the

potential for a read/write conict, and the order of execution between these loops must be

preserved for correct execution.

If loops are separated from one another by several other loops or intervening lines of

code, it might be assumed that the correct execution order will naturally occur. This is

not necessarily the case. The order of execution for concurrent threads is nondeterministic,

and the actual execution order between threads cannot be predicted. Good programming

practice requires that even when the slightest potential for some conict to occur is present,

steps must be taken to speci�cally ensure a correct execution ordering.

There are several methods available within the functionality of Pthreads, or that can be

constructed with Pthreads routines, to coordinate execution between threads. In order to

preserve simplicity within the threaded MGPOM code, a barrier was placed between those

loops that had potential for read/write conicts. The barrier code used is a Fortran version

of the code written in C found in [1].

After identifying and inserting code to handle dependencies within subroutines, the

10 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

other major chore that needs to be completed is the insertion of code to create threads

that will execute the threaded subroutines. The thread creation routine allows a single

argument to be sent to the subroutine. If the original subroutine that is to be threaded

uses more than a single parameter, some adjustments need to be made. It is recommended

that all parameters to the target subroutine be placed within a global module that can

be USE-associated within the subroutine and the calling routine. This single parameter

may then be an integer variable sent to the subroutine that would contain a unique thread

number (within the process). Within the MGPOM code, this unique thread number is used

to index the global index array for the loop bounds computed via the data decomposition

subroutine.

The above is easily applied to subroutines that are called at a single point within the

overall code. However, it is common practice to employ a subroutine several times within a

code for performing the same computations on di�erent parameter sets. In order to thread

such a subroutine, a more involved code transformation is needed. In this instance, as

before, all parameters should be encapsulated within a module for thread access. Where

the subroutine header was modi�ed above, a number of dummy subroutines are written

that accept a single parameter. It is these dummy subroutines that are used in thread

creation, and their only function is to call the target subroutine with the appropriate set of

parameters.

Agglomerating any number of consecutive threaded subroutines can be done within a

single dummy subroutine. There is no need for the subroutines to be the same. However,

because some threads may complete execution of one call to a subroutine before others,

the programmer must ensure that there are no data dependencies between the routines

11 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

called within the dummy subroutine. A barrier call between subroutine calls would delay

execution of a subsequent routine until all threads had completed execution of the prior

subroutine.

5 Results

In this section, we review the code modi�cations needed to enhance the MGPOM code with

OpenMP and FPTHRD. The ease of which these modi�cations were made is evaluated.

Also, the performance of the MGPOM code with threaded execution is presented.

5.1 Code Modi�cation Results

Whether using OpenMP or Pthreads, the same analysis for data dependence must be con-

ducted. For OpenMP this analysis determines whether or not a loop can be parallelized

and at what level nested loops may have directives inserted. For Pthreads the analysis is

also used to �nd if loop iterations may be run concurrently; however, the data decompo-

sition between threads is a factor that must be taken into account. Also, synchronization

of threads between loops must also be explicitly added for inter-loop data dependencies.

With OpenMP, such synchronization is the default behavior of parallel do loops unless

otherwise speci�ed with the nowait clause.

Non-loop code between loops can be ignored under OpenMP if such code is not contained

within a parallel region or bracketed with a single or master directive if the entire subroutine

is contained within a single parallel region. Ensuring that only a single thread executes such

non-loop code must be explicitly dealt with when using Pthreads since the entire subroutine

is threaded. Techniques to accomplish this task are more involved than adding a simple

12 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

directive.

Besides the explicit control of threads in the face of data dependencies and non-loop

code, programming with Pthreads requires the insertion of routine calls that create and

join threads. Creation of new subroutines to encapsulate concurrent tasks or modi�cation

of parameter lists of existing subroutines may also be necessary. While such tasks are

straightforward, they can be time-consuming. Drastic alterations to the original code may

be detrimental to future code maintenance e�orts. OpenMP does not force such coding

additions or changes.

With the current state of OpenMP-enhanced compilers, Pthreads o�ers a more exible

model since a programmer is able to de�ne and execute nested concurrency. A wider range

of dynamic execution possibilities (e.g., recursive bisection, Master-Worker) are also possible

with Pthreads than with OpenMP. However, if threaded execution is not desired for future

executions, it is easy to recompile a program without recognizing the OpenMP directives.

Removing calls to Pthreads routines, or maintaining two separate versions of the code,

would be more di�cult.

Given a programmer skilled in one model or the other, modi�cations to an existing code

with OpenMP or Pthreads should present no great di�culty. More code modi�cations and

additions are needed with Pthreads, though. However, we feel that such additional work

should not preclude use of Pthreads. Thus, from a purely programming point of view, the

choice of which model to use may depend upon the skills of the programmer. Exceptions

to this would be a case where few loops, placed sporadically throughout the code, are to

be parallelized would tend to favor OpenMP, while the case of a code containing various

independent tasks with di�ering amounts of work would favor Pthreads.

13 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Table 1 Twenty Block Grid Overall Execution Times (in minutes)

MPI Only MPI/OpenMP MPI/Pthreads

69 34 48

5.2 Performance Results

The Persian Gulf is the physical geographic area selected for this study to demonstrate the

execution performance of the di�erent threading models. This area extends from 48� East

to 58� East in longitude and from 23:5� North to 30:5� North in latitude. Part of the Gulf

of Oman is also included in this physical domain. The complicated features of the coastlines

near Qatar, along the Strait of Hormuz, and the northern part of the Persian Gulf is a good

data set to demonstrate the advantages of multiblock grids within the MGPOM code.

We present the overall performance results for a 10-day simulation on the twenty-block

grid in this section. The simulations were computed on the SGI Origin 2000 located at

ERDC MSRC. Only 20 processors were used in the MPI-Only version. For threaded runs

of the code, the maximum number of threads per process was set to 4. Based on the grid

points per thread threshold that was decided upon and the sizes of the grid blocks, 44

processors were made available for the OpenMP and FPTHRD threaded runs.

Table 1 shows the timing results from the MPI-Only, MPI/OpenMP, and MPI/Pthreads

versions of the MGPOM code on the twenty-block grid. The threaded results are based on

modifying only four routines from the MGPOM code. These were the four routines that

accounted for the most total execution time within the serial version of the code.

14 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

5.2.1 Idle Overhead Reduction

While MGPOM processes use asynchronous communication, those processes must synchro-

nize to some degree; e.g., processes with small blocks are forced to wait on the actual receipt

of data from processes with large blocks that have been performing more calculations prior

to communication. The greater the di�erence in size between adjacent blocks, the larger

the load imbalance of computation will be. In order to quantify the degree of load imbal-

ance within a given code segment, idle overhead is de�ned as the ratio of execution time to

maximum execution time expressed as a percentage:

idle overhead = 100%�

 
1:�

P
N

i=1
ti

N � tmax

!
(1)

where N is the number of MPI processes, ti is execution time of process i, and tmax is the

largest execution time of a process.

Pro�ling the serial MGPOM code revealed the routine PROFQ takes nearly 20% of the

total execution time. The load balancing e�ects of OpenMP and Pthreads on this routine

are examined. The following results were taken from the executions reported above.

Figure 3 shows the cumulative timing results of the PROFQ routine for individual blocks

of the twenty-block, MPI-Only code for a 10-day simulation running on 20 SGI Origin

2000 processors. A measure of 38% idle overhead was observed within this routine (total

wall-clock execution time was 69 minutes).

With the MPI/OpenMP version of the code, a measure of 21% idle overhead was ob-

served (total wall-clock execution time was 34 minutes). Figure 4 shows the PROFQ routine

timing results for this version of the code. Under the MPI/Pthreads code, a measure of

15 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Figure 3 PROFQ (MPI-Only) Cumulative Execution Time in seconds

28.5% idle overhead was achieved within the PROFQ routine (total wall-clock execution time

was 48 minutes). This timing result is shown in Figure 5.

6 Conclusions

The timing results show a signi�cant improvement in the execution time as well as in the

load imbalance produced by MPI-Only execution. It has also shown that through use of

the hand-coded, dynamic threading within OpenMP and Pthreads, load balance between

the MPI processes can be improved. The techniques described herein should be applicable

to a large number of other scienti�c codes.

Since only one speci�c code was used in this study, a de�nitive conclusion about which

thread programming model is superior cannot be drawn. However, within the constraints

of the limited amount of modi�cations made to the MGPOM code, OpenMP appears to

be the better choice. It was easier to program with and delivered a faster execution time.

16 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Figure 4 PROFQ (MPI/OpenMP) Cumulative Execution Time in seconds

Figure 5 PROFQ (MPI/Pthreads) Cumulative Execution Time in seconds

17 of 18



July 13, 2000 Comparison of OpenMP and Pthreads

Whether or not having an added layer of subroutine calls required with the use of the

FPTHRD package was detrimental to that version of the code can only be deduced by

further study. Also, the question of whether similar �nding would result from a more

complexly structured code must await future research.

References

[1] David R. Butenhof, Programming with POSIX Threads, Addison-Wesley, Reading, MA,
1997.

[2] Richard J. Hanson, Clay P. Breshears and Henry A. Gabb. \A Fortran Interface to
POSIX Threads," Technical Report ERDC MSRC/PET TR/00-18, February 2000.

[3] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition] Information
Technology{Portable Operating System Interface (POSIX){Part 1: System Appli-
cation: Program Interface (API) [C Language] (ANSI), IEEE Standards Press,
1996.

[4] Phu V. Luong, Clay P. Breshears, and Henry A. Gabb, \Dual-level Parallelism Im-
proves Load-Balance in the Production Engineering Application CH3D," Technical Re-
port ERDC MSRC/PET TR/00-07, February 2000.

[5] Le N. Ly and Phu V. Luong, \Numerical Multiblock Grids in Coastal Ocean Circulation
Modeling," Journal of Applied Mathematical Modeling, 23, pp. 865{879, November 1999.

[6] Wade D. Oberpriller, Aaron C. Sawdey, Matthew T. O'Keefe, Shaobai Gao,
and Steve A. Piacsek, \Parallelizing the Princeton Ocean Model Using TOPAZ,"
http://topaz.lcse.umn.edu.

[7] OpenMP Architecture Review Board, \OpenMP Fortran application program interface,
Version 1.1," http://www.openmp.org, November 1999.

[8] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra,
MPI|The Complete Reference: Volume 1, the MPI Core, MIT Press, Cambridge, 1998.

18 of 18


